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Abstract

In recent years Deep Convolutional Neural Networks
have been increasingly used to solve interesting problems in
the field of computer vision. One such problem is Monoc-
ular Depth Estimation or estimating per-pixel depth given
single images. Over the past few years, research papers
like MegaDepth|[23|] and Monodepth|l11l] have produced ex-
tremely accurate depth maps from single images. How-
ever, the challenge with most of these approaches is that
they’re not optimized for mobile or embedded platforms.
The FastDepth[33] paper from 2019 attempted to solve
the problem of monocular depth estimation on mobile de-
vices. This project attempts to recreate the FastDepth re-
sults, while improving upon them with a different architec-
ture, loss function and training methodology.

1. Introduction

Depth estimation from images is a very important dis-
cipline in the field of computer vision and graphics. Re-
cent years have seen a wide range of research which
has approached the problem from different angles. The
most commonly used and state-of-the-art methods rely on
deep convolutional neural networks to solve this problem
by training them on very large publicly available depth
datasets[28][23][LO][9]. The major problem with all these
approaches is that they are extremely compute intensive.
Most trained networks are greater than 20MB in size and
have millions of floating point parameters. Thus, while they
provide extremely accurate results, they’re not suitable for
real-time depth inference on commodity, embedded or mo-
bile hardware.

Real-time, fast and power-efficient depth estimation has
quickly become the holy-grail for many applications. In
particular, mobile augmented reality applications, self-
flying or self-driving automatons and even IOT-style home
devices can greatly benefit from compute-efficient monoc-
ular depth estimation. While specialized sensors like Li-
DAR or other ToF hardware allow for precise short-term
depth estimation, these sensors are prone to noise when

used outdoors. Also, apart from being expensive, they are
also not (yet) readily available on commodity phones or
other embedded-hardware. Cameras, however, are ubiqui-
tous on almost every phone and embedded platform. Unfor-
tunately, most mobile devices still only have a single cam-
era. As such, mobile, real-time monocular depth estimation
is a very interesting area of research.

In 2019, the FastDepth[33]] paper published at ICRA at-
tempted to approach the problem of monocular depth esti-
mation by inventing a mobile optimized-architecture which
was further pruned using NetAdapt[34]. The network was
trained on the NYU Depth V2[28] dataset and produced
impressive results when tested on mobile/embedded hard-
ware. The goal of this work is to reproduce the results of
the FastDepth[33]] paper while improving upon it by using a
different architecture and training methodology. This work
also tests the generalizability of the overall FastDepth net-
work design methodology to other mobile architectures.

2. Related Work
2.1. Prior Work on Depth Estimation

The past few years have seen a wide range of approaches
to the problem of monocular depth estimation. While tradi-
tional methods which use multiple cameras or stereo vision
like SGBMJ15]] continue to be popular, they’ve also been
enhanced with bespoke hardware like LiDAR and Time-of-
Flight (TOF) sensors which help provide an accurate 3D
point cloud. Despite the popularity of these methods, the
challenge of obtaining the depth map of a scene given just a
single image (monocular depth estimation) continues to be
a very active area of research.

Recent years have seen research works which have
trained deep convolutional neural networks (CNN) on
massive publicly available or curated datasets like
KITTI[LO][O], NYU Depth V2[28], Cityscapes[4] and
MegaDepth[23]. The MegaDepth[23] research paper from
2018 is particularly interesting, not just for training a highly
accurate monocular depth estimation CNN, but also for cu-
rating a 200GB depth dataset of outdoor scenes collected
using COLMAPI27]]. Based on empirical usage in produc-



tion systems, MegaDepth continues to be one of the most
accurate and stable depth prediction networks. The only
challenge with MegaDepth is that the large size of the net-
work and the enormous dataset (199GB when compressed)
makes it very hard to reproduce the results of MegaDepth
on a budget.

There have also been extremely successful approaches
like Monodepth[11]] and MonodepthV2[12] which have re-
lied on self-supervised learning using image-reconstruction
loss to exploit the left-right consistency constraint of stereo
images. These works are especially important because
they’ve developed a methodology for using largely unla-
beled (or partially labeled) datasets for developing very
accurate depth maps. These papers makes use of easily-
obtainable binocular stereo images to train their network.
The use of unlabeled data potentially allows for collection
and use of enormous quantities of data which can be used
for network training.

Other recent approaches have relied on transfer
learning[3] and a high performing pre-trained encoder
based on DenseNet[20]]. This paper showed that with a suf-
ficiently accurate and pre-trained encoder, even a simple de-
coder architecture can lead to good results for depth estima-
tion. Leveraging transfer learning on a pre-trained dataset,
this work also helps reduce the reliance on very large la-
beled datasets.

Other recent works have also exploited commonly avail-
able dual-pixel hardware to estimate monocular depth[8]].

The challenge with all of the works cited above is that
none of them were trained for inference on low-compute
budget platforms like mobile or embedded devices. The
FastDepth[33] paper published in 2019 stands out here by
attempting to create an efficient, small and fast network ar-
chitecture which can easily perform inference on embedded
platforms. As mentioned previously, this works takes in-
spiration from the FastDepth paper and attempts to recreate
and then extend the original paper’s approach.

2.2. Prior Work on Mobile-optimized CNN Archi-
tectures

In parallel, the deep-learning research community has
also published several works optimizing CNN architec-
tures for regression and classification on mobile and em-
bedded devices. One of the first such architectures
was SqueezeNet[21] which achieved the accuracy of
AlexNet[22] with 50x fewer parameters. This was followed
shortly thereafter by ENet[24]], a CNN architecture opti-
mized for real-time semantic segmentation.

Later, seminal works like  MobileNet[17],
MobileNetV2[26] and MobileNetV3[16]] revolutionized
mobile CNNs by using depthwise-separable convolutions
and inverse-residual bottleneck layers which dramatically
reduced the size of the underlying networks while achiev-
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Figure 1. Architecture of the original FastDepth[33] architecture
from the original paper

ing impressive classification accuracy on ImageNet[3]
dataset. These works are especially important because they
helped define a general methodology for shrinking existing
architectures for mobile devices.

More recent results like EfficientNet[31] have come up
with a very interesting way to develop a compound scale co-
efficient to scale the depth/width/resolution of a network all
at one. The goal is to allow the network to maintain max-
imum accuracy with minimum number of operations. By
tuning the EfficientNet scale factor, the network can easily
trade off efficiency for accuracy.

The FastDepth[33] paper mentioned earlier (which
forms the foundation of this work) makes heavy use of Mo-
bileNet inspired depthwise-separable convolutions. How-
ever, while the other architectures discussed so far focus on
the encoder side of the architecture for prediction and clas-
sification embeddings, FastDepth goes a step further and
experiments with optimal decoder architectures for mobile
and embedded platforms. FastDepth’s decoder architecture
is called NNConvS which efficiently up-samples feature
maps into full size depth maps. This decoder architecture
is explored more in the Approach section of this report.

3. Approach
3.1. Background on FastDepth

As previously mentioned, the FastDepth[33] paper ex-
plored mobile-optimized architectures for monocular depth
inference. This work aims to recreate the results of the Fast-
Depth paper and improve upon the results using a different
training methodology.

Figure [I| shows the FastDepth network architecture. At
its core, the architecture is an encoder-decoder network
which is optimized for mobile/embedded use. The overall
architecture makes heavy use of depthwise-separable con-
volutions which are a hallmark of MobileNet family of ar-
chitectures. If C, is the number of output channels of a
convolution and h and w are the height and width of the
convolutional filter respectively, then use of a depthwise-
separable convolution instead of a traditional convolution
reduces the number of MAC operations by a factor of
(1/(Co) + 1/ (h % w))IT7).

The original paper did a very thorough job of bench-
marking different combinations of encoder and decoder ar-
chitectures. In the original ablation studies, a mobilenet en-
coder was found to provide the best balance of speed and



accuracy for embedded use cases.

The paper also developed a novel decoder architecture
called NNConv5[33]] which consists of 5 sets of upsampling
layers, each of which consists of a 5x5 convolution followed
by a nearest-neighbor upsampling. In order to optimize the
network for mobile use cases, the convolution operations
consist only of depthwise-separable convolutions.

Despite this encoder-decoder architecture, the paper
found that the network had difficulty preserving the more
course details of the depthmap. To counter this, skip con-
nections were added from the encoder to the upsampling
layers. While both concatenation and addition operations
for skip connections were benchmarked, addition was faster
and resulted in fewer MAC (multiply-accumulate) opera-
tions. As such, the final FastDepth architecture made use of
addition.

The final network illustrated in Figure [I| was trained on
33GB of NYU Depth V2[28] dataset using SGD with mo-
mentum optimizer and a learning rate of 0.01.

It is worth noting that the FastDepth authors also pruned
their network using NetAdapt[34]]. This further reduced the
size of their network. However, given the time and mon-
etary budget constraints of this project, this work does not
attempt to try to prune and retrain the network. The Fast-
Depth architecture shown in[I|forms the basis of exploration
for this work.

3.2. Network Architecture

While starting with the base architecture described
above, this work made several changes to the network
in order to improve network accuracy and generate
more perceptually accurate depth maps. Perhaps the
biggest change to the network architecture was use of a Mo-
bileNetV2 backbone pretrained on ImageNet as the encoder
of choice. The original paper made use of a pretrained Mo-
bileNet. There were several reasons for this choice. The
original intuition was that MobileNetV2 improved upon
MobileNet in terms of accuracy (while having compara-
ble speed). As such, use of MobileNetV2 was worth ex-
ploring. It is also a well studied and deployed architecture
which has generalized well to a large number of tasks such
as segmentation and object detection (This is demonstrated
in the original paper[26] by creating optimized networks for
object-detection and segmentation). Studies described later
in the Experiments section further justify this choice.

Table 1 describes the architecture of the encoder. The
final average-pooling and 1 x 1 convolutional layers were
removed from the MobileNetV2 architecture. These layers
were initialized using weights from a MobileNetV2 model
pre-trained on the ImageNet[5] dataset.

Note that the encoder decoder architecture used by Fast-
Depth made use of skip connections from the encoder to the
decoder. Thus, in order to make use of additive skip con-

H Input Operator t ¢ n s H
2242 x 3 conv2d - 32 1 2
1122 x 32 bottleneck 1 16 1 1
1122 x 16  bottleneck 6 24 2 2
562 x 24 bottleneck 6 32 3 2
282 x 32 bottleneck 6 64 4 2
142 x 64 bottleneck 6 96 3 1
14% x 96 bottleneck 6 160 3 2
72 % 160 bottleneck 6 320 1 1
72%x320 conv2dlx1 - 1280 1 |1

Table 1. The above table describes the architecture of the encoder.
Each line describes a layer which is repeated n times. Each layer
in a row has the same number of output channels c. The stride s is
used for the first layer of each sequence followed by a stride of 1.
The expansion factor t is applied to the input in the inverse-residual
(bottleneck) layers.

H Input Operator filter size padding outchannels H

72 x 1024  depthwise conv2d 55 2 512
72 x 512 upsample bilinear - - 512
14% x 512 depthwise conv2d 5%5 2 32
142 x 32 upsample bilinear - - 32
282 x 32 depthwise conv2d 5x5 2 24
282 x 24  upsample bilinear - - 24
562 x 24  depthwise conv2d 5x5 2 16
562 x 16  upsample bilinear - - 16
1122 x 16  depthwise conv2d 5%5 2 32
1122 x 32 upsample bilinear - - 32
2242 x 32 pointwise conv2d Ix1 1 1

Table 2. The above table describes the architecture of the
NNConv5 decoder. Each depthwise conv2d layer consists of a
depthwise convolution followed by a batchnorm layer and a relu
non-linearity. They have been grouped together in the table above
for brevity.

nections, the decoder architecture must depend on the out-
put channels of the encoder. This would not be a problem if
concatenative skip connections were used, but as the Fast-
Depth paper demonstrated, concatenative skip-connections
can be more expensive overall. As such, the architecture of
the NNConv5 decoder was adjusted significantly in order to
be compatible with a MobileNetV?2 based encoder.

Table 2 broadly describes the architecture of the decoder.
Following the NNConvS5 pattern established in FastDepth,
this decoder consists of 5 sets of upsampling layers. Each
such layer is a depthwise-convolution+batchnorm-+relu
combination followed by a bilinear upsample which upsam-
ples the feature by a factor of 2 at each pass. This structure
efficiently upsamples the encodings from the preceding Mo-
bileNetV2 encoder into a full sized depth map. The base im-
plementation of the architecture and layers were taken from
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Figure 2. Figure shows the additive skip connection resolutions
between the encoder and the decoder. From the encoder, the last
layer with the appropriate resolution h X w X c is used as the skip
connection to the decoder layer with the same resolution.

the open-source FastDepth[32] code with several modifica-
tions to support MobileNetV?2 and custom skip connections
to the modified decoder layer.

As shown in figure [4] there are 4 sets of additive skip
connections between the encoder and the decoder. In each
case, the last repeated block with the appropriate resolution
from the Mobilenetv2 encoder is used as a skip connection
into the decoder.

The network encoder is initialized with weights pre-
trained on ImageNet[S] data. The decoder, on the other
hand, is initialized using Kaiming Initialization[14]].

3.3. Optimizer

The original FastDepth paper used SGD with momen-
tum as its optimizer. For this work, both SGD with momen-
tum and Adam were compared and SGD with momentum
was eventually chosen because it provided qualitatively and
quantitatively superior results during experimentation.

3.4. Loss Function

The primary loss function used for comparing ground
truth depth data with predicted depth maps was Smoothed
L1 Loss[lL]. This loss function combines the best aspects of
L1 and L2 losses and is more robust to outliers. The loss
for pixels a and x in the prediction and ground truth can be
defined as follows:

ifla—z|<p

|a — x| — 0.58, otherwise

la,z) = {Oﬁ(a B

The original FastDepth paper and open-sourced code
made[32][35] use of L1 (MAE) and L2 (MSE) losses re-
spectively. During experiments though (see Experiments
section), Smoothed L1 loss produced qualitatively (and per-
ceptually) better results.

Merely using this simple loss though is not sufficient to
generate depth maps with good perceptual quality. Sim-
ply using this loss causes the network to generate overly
blurry/smoothed results. It is extremely important to main-
tain the perceptual quality of the depth map. In order to
preserve object boundaries, an additional edge preserving
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Figure 3. Comparison of L1, L2 and Smooth L1 loss. Figure from
paper[7] published in 2018.

loss was added. This loss applies a differentiable sobel
operator|6]] to the ground truth depth and the prediction and
then takes a smoothed L1 loss between the two resultant
gradient images.

EdgeLoss(G, P) = SmoothedL1(Sobel(G), Sobel (P))

Where G and P are the ground truth and predicted depth
maps respectively. The final loss function for the network is
defined as:

L(G, P) = SmoothedL1(G, P) + AEdgeLoss(G, P)

The lambda parameter was determined experimentally
based on the magnitudes of the two losses. For the purposes
of this work, A = 12 was chosen.

3.5. Note on Learning Rate

The original FastDepth paper and open-source[32][35]
implementations used a default learning rate of 0.01. How-
ever, for this work, I wanted to explore a more dynamic
way to determine the learning rate. Following the gen-
eral method outlined in Leslie N Smith’s paper Cyclical
Learning Rates for training Neural Networks[30] and im-
plemented in both the FastAI[18] library and PyTorch LR-
Finder[29], the learning rate is increased exponentially after
each batch till the loss diverges or till we reach the maxi-
mum learning rate configured. Running this LR-Finder on
the network and data helped tune the learning rate for the
specific problem. For the final training, a learning rate of
0.08 was determined using LR Search. This learning rate
was decayed by a multiplier of 0.9 every 10 epochs.

3.6. Data

FastDepth was trained on 33GB of the NYU Depth V2
dataset. In order to keep the scope of this work manage-
able and to maintain an apples-to-apples comparison, this



Figure 4. The above image shows predictions from the final net-
work. From left to right a) The original image, b) the ground truth
depth map and c) the predictions from the network.

work also relies on the very same dataset. The dataset, the
preprocessing tools and the PyTorch[23] dataloaders were
generously open-sourced by the FastDepth team in their of-
ficial repository([32]. This work relied on the same data for
training the final network architecture. However, as elabo-
rated upon in the Experiments section, all comparative stud-
ies and ablations were carried out on a subset/ of the NYU
Depth V2 Dataset to save on time and compute resources.

3.7. Training Statistics

The final network was trained on 33GB of the NYU
Depth V2 dataset on a NVIDIA P6000 GPU for 100 epochs.
The training took a week to complete and achieved a §1
score of 0.82. J1 score is the percentage of pixels in the
predicted depth map which differ by less than 25% from
the ground truth. To my knowledge the FastDepth net-
work achieved a 41 score of 0.77 on the full dataset.

The experimental methodology that led to this final
network, training techniques and hyperparameters, is ex-
plained in the next section.

4. Experiments

4.1. Experimental Methodology

In order to achieve the final network, hyperparameters
and training methodology listed in the previous section, it
was important to explore the network architecture and hy-
perparameter space. Doing so with the entire NYU Depth

V2 dataset would have been prohibitively expensive and
would have taken much more time than is available for the
purposes of this project. As such, it was important to de-
velop an experimentation methodology which would rely

on a subset of the data. For this purpose, the[NYU Depth V2
28|] was chosen for hyperparameter tun-

ing. This is a collection of 1400 images along with their
ground-truth depth maps. Each combination or architec-
ture/hyperparameter was iterated on for 50 epochs and eval-
uated on the basis of the final loss and §1 score achieved.
In the interest of keeping this report manageable, I have
attempted to summarize the most important results in this
section.

4.2. Comparing MobileNet to MobileNetV2

One of the first experiments performed, was the compar-
ison of MobileNet to MobileNetV2. As mentioned previ-
ously, the original FastDepth[33]] paper made use of a Mo-
bileNet encoder combined with an NNConv5 decoder with
additive skip connections. In the paper’s analysis this archi-
tecture led to the best balance of accuracy, model size and
inference speed. The authors of the paper generously open-
sourced their code making a comparison to their original
model simpler.

Replacing MobileNet with MobileNetV2 for the encoder
also required re-engineering the decoder layer to be able
to handle additive skip connections from the encoder layer
(please see previous section for architecture details). Ini-
tial comparison between MobileNet and MobileNetV2 on
the NYU Depth V2 Labeled Dataset did not result in much
of a difference in qualitative or quantitative results when
trained for 50 epochs. The MobileNet variant achieved a
01 score of 0.743 while the MobileNetV2 variant achieved
a 01 score of 0.740. Similarly while the MobileNet variant
achieved a loss of 0.40, the MobileNetV2 variant achieved
aloss of 0.41. While these results show the MobileNet vari-
ant to be slightly better, the results are close enough to be
due to random noise (especially given the random initial-
ization of weights using Kaiming Initialization[14] and the
random shuffling of the training dataloader).

4.3. Impact of LR Search

The real difference in results emerged once LR
Search[30][29] was introduced to find the optimal learn-
ing rate. Before training of the network, an LR-Search
was run for both the MobileNet and MobileNetV?2 vari-
ants while continuing to use the labeled subset data. This
is where the MobileNetV?2 variant (with optimized learn-
ing rate) saw a significant improvement. The MobileNetV?2
variant achieved a 01 score of 0.815 and a loss of 0.31 com-
pared to the MobileNet variant’s score of 0.724 and loss of
0.53 respectively. Thus, at least when evaluating this par-
ticular dataset, it was clear that MobileNetV2 based archi-


http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat

H Network 51  MSE s/t H
MobileNetV2 0.740 040 1.76
MobileNet 0743 041 176 corien oo i wsisooin o)
MobileNetV2(searched 1r=0.03) 0815 031 1.76 E . . E’ . .
MobileNet(searched 1r=0.09) 0.724 0.53 1.76
MobileNetV2+Adam(searched Ir=0.016) 0.485 1.165 1.76
MobileNet+Adam(searched 1r=0.01) 0612 0926 176 pulim W 3 0

Table 3. Results of training MobileNet and MobileNetV2 with
fixed LR of 0.01 and the same results when training MobileNet
and MobileNetV2 with LR-Search based learning rate. Training
was also attempted using the Adam optimizer instead of SGD

tecture combined with LR-Search based learning rate per-
formed the best (Please note though that since then, differ-
ent runs of the experiment have presented slightly different
results. In general, the performance of MobileNet and
MobileNetV2 variants is comparable).

Table[3|shows the quantitative results of the training runs
described earlier. It is worth noting that the MobileNet
based architecture with LR-Search seems to perform worse
than when trained with a fixed learning rate of 0.01. This is
a curious result and appears to be an anomaly. I would not
expect there to be too much of a difference between Mo-
bileNet and MobileNetV2 when combined with LR-Search.
This is something I wish to explore in follow-up work. An-
other curious result is the poor performance of the default
Adam optimizer (81 = 0.9 and 82 = 0.999). Despite
repeated trials, the default Adam configuration performed
much worse than SGD on the subset dataset.

Given the quantitative results and since the goal of this
work was to extend and test the generalizability of the Fast-
Depth approach, I chose to go ahead with the custom Mo-
bileNetV2 based architecture (along with the decoder mod-
ified to handle skip connections).

4.4. Impact of Edge-Loss

One thing which is immediately clear in images from
Figure is that all the networks end up producing
blurry/overly-smoothed depth maps. Ideally, the trained
network will be able to preserve the object boundaries. In
order to retain object edges, an edge preserving loss was in-
troduced. The details of this loss are described in the earlier
section on Approach. The overall idea was to use a differ-
entiable Sobel operator[6] on both the ground-truth depth
maps and the predictions to get the corresponding gradient
images. A scaled version of this Smoothed L1 loss between
these two images is additionally added to the existing loss.
By looking at the magnitude of different loss terms, a mul-
tiplier of 12 was chosen to scale the edge loss. The output
depth maps from networks trained with this combined loss
showed an immediate improvement in the perceptual qual-
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Figure 5. Comparisons of depth maps produced after 50
iterations. ~ From left to right a) Raw image, b) ground
truth depth, c) MobileNetV2+NNConv5 d) MobileNet +
NNConv5, e)MobileNetV2+NNConv5(0.03) and f) Mo-
bileNet+NNConv5(0.09)

Figure 6. §1 and loss plots of MobileNetV2+NNConv5 (left) and
MobileNet+NNConvS5 (right)

ity of the produced depth maps. Figure 8| demonstrates the
impact on the depth maps after use of edge/sobel loss. Since
other losses are on a different scale, a quantitative compari-
son wouldn’t make much sense here.

4.5. Impact of batch size

For final training of the network on the entire dataset, two
different networks were trained with different batch sizes.
Table 4 shows the impact of training the networks on bath
sizes of 64 and 128. It is clear that the batch size of 128
produced far superior results compared to the batch size of
16. While a larger batch size will help the network be less
prone to noise and converge faster, I didn’t expect the dif-
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Figure 7. Images, ground truth depth maps and predictions when
trained with and without Sobel Loss

H Batch Size 61 Score H

128 0.82
64 0.61
Table 4. The table above shows impact of two different batch
sizes used to train the network on the full dataset. It is clear that
the larger batch-size of 128 leads to far superior results compared
to a batch size of 16

ference to be quite so profound. A follow-up investigation
could help determine whether more epochs would help the
smaller batch size eventually achieve the same level of ac-
curacy.

4.6. Deployment

The final model trained on 33GB of NYU Depth V2 data
had a model size of 11.8 MB. Compressed to float16, the
model has a size of 5.9 MB. In order to test the model on
mobile devices, I made use of [Snap Lens Studio[2]], a stu-
dio editor for creating and deploying small AR applications
on Snapchat app’s community AR ecosystem. Lens Studio
has a tool called SnapML which allows building of appli-
cations visually using trained ONNX models which can be
dragged and dropped into Lens Studio. The model achieved
a fairly stable 30 FPS on an iPhone XR. In theory, the model
could run even faster, but a lot of compute power was spent
visualizing the model as a normalized grayscale texture us-
ing a shader. It is also worth noting that this exercise made
me realize that iOS CoreML NPU does not (yet) support
relu6 layers which are used quite heavily in MobileNetV2.
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Figure 8. Final deltal and loss curves for the network trained for
100 epochs on the full dataset

Replacing relu6 layers with relu, or using MobileNet will
allow for the use of i0S’s NPU.

While the results look promising on a high end iPhone,
commodity Android phones like the LG LMK-300 can only
achieve (at best) 5-10 FPS. On such devices, it is important
to not try to run the depth inference on every frame (as is
the case in this lens).

Figure shows a Snapcode of the deployed publicly
available community lens. If the reader has the Snapchat
app installed, they may open it and scan the snapcode (press
and hold on the Snapchat camera screen) to unlock the lens
and try it. Videos and links to the project are available in
the supplementary section of this report.

5. Conclusion

Overall, FastDepth[33]] has proven to be a simple, eas-
ily extendable and generalizable architecture for mobile
monocular depth estimation. By applying hyperparameter
tuning methods like LR-Search and applying custom loss
functions, the network performance can be improved fur-
ther. The overall network design philosophy can also be
extended to other mobile architectures like MobileNetV?2
while adapting the NNConv5 decoder architecture to sup-
port additive skip connections from the customized encoder
layers. The trained model is easy to deploy on mobile de-
vices and can run in real-time.


https://lensstudio.snapchat.com/
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Figure 9. Screengrab of running lens deployed to an iPhone

5.1. Future Work

While this work succeeded in recreating the FastDepth
paper results and extending them using different network
architectures, hyperparameters and training methodologies,
the time constraints for this project did not allow for all
the thorough exploration and experimentation required to
deploy a production-grade mobile depth estimation model.
Some ideas for future work are listed below:

* Use of more diverse datasets - While the NYU Depth
V2[28] is a great dataset for benchmarking monoc-
ular depth algorithms, it is limited in that it con-
tains only images of indoor household scenes. A
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Figure 10. Snapcode of publicly available community lens

truly generalizable production quality model should
incorporate outdoor images which are critical for AR,
robotics and autonomous system applications. Com-
bining NYU Depth V2 dataset with outdoor datasets
like MegaDepth[23]], KITTI[10][9] and Cityscapes[4]]
can theoretically lead to very interesting results. In
particular, I did attempt to explore the MegaDepth
dataset for this project but timing, budgetary and com-
pute resource constraints did not allow me to make
progress on this front.

¢ Exploring different mobile encoders - As mentioned

earlier in this report, there are a wide range of mobile
optimized CNN architectures. It is possible to extend
the FastDepth approach to each of them to benchmark
results. In particular, EfficientNet with its compound
scaling coefficient could lead to interesting trade-offs
between accuracy, model-size and speed.

¢ Use of smaller encoders - Depth estimation does not

require semantic reasoning about the scene. As such, it
is possible to consider even smaller encoder architec-
tures like ENet[24]] and Squeezenet[21]] for inference.

* Use of larger network for perceptual loss - It may

be possible to improve the results of the network by
making use of a much larger network like Resnet[13]]
or DenseNet[20] for computing perceptual loss be-
tween groundtruth and predicted depthmaps. Unfor-
tunately, given my limited compute budget, attempting
such a training structure severely limited the batch-size
I could train with to 2-4. It may still be possible to



make progress given more computational resources or
by using a small batch-size coupled with gradient ac-
cumulation.

* Exploring self-supervised approaches - As shown
by Monodepth[11] and MonodepthV2[12] papers, it
is possible to use readily available stereo data to train
monocular depth networks in a self-supervised man-
ner. It should be possible to explore this approach us-
ing the same mobile optimized network used for this
project.
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6. Supplementary Material

* |Github Repository] - Contains source code and
README for training and evaluation code used to
train the network.

* Videos of model running on iPhone - Contains record-
ings of the ONNX model running on an iPhone after
being deployed as a community lens on Snapchat.

* Model checkpoints and ONNX exports| - This links
contains the intermediate training checkpoints stored
as .pth files as well as two models exported in ONNX
format.

¢ Tensorboard.dev| link to graphs of §1 score and loss
changing during hundred epochs of training on the full
dataset.

* Simple Lens Studio Depth Visualization Project - A
link to a simple lens studio project which can visualize
indoor depth. The github repository linked above has
instructions on how to use Lens Studio.
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